
Copulas and Machine Learning 
UAI 2012 Tutorial 

for anyone interested in real-valued modeling 
  

Gal Elidan 
Department of Statistics 

Hebrew University 





Canadian scholar scapegoat for global meltdown 
… 
In a scholarly paper published in 2000, Li proposed the theorem be 
applied to credit risks, encompassing everything from bonds to 
mortgages. This particular copula was not new, but the financial 
application Li proposed for it was. 
 
Disastrously, it was just simple enough for untrained financial 
analysts to use, but too complex for them to properly understand. 
It appeared to allow them to definitively determine risk, effectively 
eliminating it. The result was an orgy of misspending that sent the 
U.S. banking system over a cliff. 



Motivation 

The world around us is continuous 

 

 
 

Many of these domains  

 have a complex structure 

 are highly non-linear 

 are high-dimensional 
 

Our goal: to learn realistic joint distributions 
(and use them for prediction, explanation, discovery) 

 

Gene expression Chemical content Stock market 



Motivation 

Density estimation is easy in one dimension: 

Many convenient families (Gaussian, Gamma, Chi2,…) 

Non-parametric approach is efficient and accurate 
 

In contrast, for two (or more) variables: 

X Few explicit non-Gaussian families 

X Non-parametric estimation is demanding 

X Sensitive to noise 

   
 most of multivariate ML is discrete! 



Copulas 
a framework for modeling 
multivariate distributions 

Graphical Models 
a framework for modeling 
multivariate distributions 

Why should we care about copulas? 

 

 Highly flexible representation 

 Separate univariates from the 
     true nature of dependence 
     (we will see this shortly) 

X typically limited to a small 
    number of dimensions  

 

 Intuitive representation 

 Tools for large-scale  
    estimation and computation 

X limited to few workable forms 
   (for continuous domains) 

 

Can our community take advantage of both? 



Outline 
 Part I: Introduction to Copulas 

 Part II: Graphical Copula Models 

 Part III: Other Copula-based works in ML 



Part I: Introduction to Copulas 
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 A dependence prelude 

 What are copulas 

 Copula models 

 Copulas and dependence 

 Multivariate copulas 



What is the dependency structure? 

Example thanks to 
Christian Genest 

When X is large Y is 
low and vice-versa 



What is the dependency structure? 

Example thanks to 
Christian Genest 



What is the dependency structure? 

this region is  
“doubly” rare 

X ~ EXP(x)  
Y ~ EXP(Y) 
FX,Y(x,y)=FX(x)FY(y) 

Example thanks to 
Christian Genest 



What is the dependency structure? 

Is the dependency multi-modal? Heavy tailed? 



What is the dependency structure? 

Is the dependency multi-modal? Heavy tailed? 

Humans are inapt at “seeing” 
the dependency structure 



Probability 101 Example 

X1 = minimum of the two numbers 

X2 = maximum of the two numbers 

 

The variables are obviously dependent (X2X1) 

It is easy to show that: 

 

 

What if we change the numbers of each die to 7,…,12? 

Obviously, the joint distribution changes. 

But, intuitively, the dependence structure does not! 



Probability 101 Example 

X1 = minimum of the two numbers 

X2 = maximum of the two numbers 

 

The variables are obviously dependent (X2X1) 

It is easy to show that: 

 

 

What if we change the numbers of each die to 7,…,12? 

Obviously, the joint distribution changes. 

But, intuitively, the dependence structure does not! 

Copulas are all about separating the univariate 
marginals from all other (dependence) factors 
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 What are copulas 

 Copula models 

 Copulas and dependence 

 Multivariate copulas 



A (bivariate) copula is a function C:[0,1]2[0,1] such that 

 for all u,v: 

 for all u,v: 

 for all u1u2,v1v2: 
 

    

  this is just the positive mass (2-increasing) property 
 

Equivalent probabilistic definition: 

Let U1 … UN be real random variables  U([0,1]) 

A copula function C:[0,1]N[0,1] is a joint distribution 

 

 

Copulas 

u2,v2 

u1,v1 



A (bivariate) copula is a function C:[0,1]2[0,1] such that 

 for all u,v: 

 for all u,v: 

 for all u1u2,v1v2: 
 

    

  this is just the positive mass (2-increasing) property 
 

Equivalent probabilistic definition: 

Let U1 … UN be real random variables  U([0,1]) 

A copula function C:[0,1]N[0,1] is a joint distribution 

 

 

Copulas 

u2,v2 

u1,v1 

But uniform random variables are 
uninteresting… 



The Copula Trick 

Let X  F be (almost) any continuous RV 

What is the distribution of F(x)=P(X≤x)? 

 

 

 
 



The Copula Trick 

Let X  F be (almost) any continuous RV 

What is the distribution of F(x)=P(X≤x)? 

 

 

 
 

Constructively: 

1) Choose any Fi(xi) 

2) Fi(xi)  U([0,1]) so plug into any copula function 

           C(F1(x1),…,Fn(xn)) is a valid joint distribution! 

 



How powerful is this framework 

Sklar’s Theorem (1959): For any joint distribution over 
X1,…,XN, there exists a copula function C such 

 
 

and if the marginals are continuous, the copula is unique 

(if discontinuous, see Genest & Neslehova 2007) 
 

A word of warning: 

Finding the “right” copula may be as hard as finding FX! 
 

A word of encouragement:  

We now have significant constructive flexibility! 
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 What are copulas 

 Copula models 

 Copulas and dependence 

 Multivariate copulas 



Example 1: The FGM Copula 

An analytically simple copula: 

 
 

 

 

 

 

 

 sets “distance” from independence copula uv  

 

 

=0 (independence) =+1 =-1 



Example 1: The FGM Copula 

An analytically simple copula: 

 
 

 

 

with Exp(1) marginals  with Exp(1) and N(0,1) marginals  



Example 2: Inversion of Sklar’s 

1. Start with a multivariate distribution 

 

 in bivariate case copula is specified by  

2. Extract its (Gaussian) copula 

 

 

 

 



Example 2: Inversion of Sklar’s 

1. Start with a multivariate distribution 

 

 in bivariate case copula is specified by  

2. Extract its (Gaussian) copula 

 

 

 

 

3. Plug in any marginal into our copula function 



Example 2: The Gaussian Copula 

same 
copula 

function 

 



Example 2: The Gaussian Copula 

More generally, we can mix any univariate 
marginals with one of the many copula functions! 



Some Copula Examples 

• Independence copula: 

 
 

• Gaussian copula (Inversion): 

 
 

• Clayton copula (Archimedean): 

 
 

• … 



A Real Example 

Consider the Nazdaq and S&P 500 GARCH innovations: 

Example from van den Goorbergh et al. 2005 and thanks to Christian Genest 



A Real Example 

How can we view the underlying copula? 

Step 1: Estimate the margins in the most conservative way: 

 

 

 

Step 2: Plot the pairs 

 

 

 

where R[m] and S[m] are the ranks of the samples 



A Real Example 

This empirical copula was studied by many starting with 
Ruschendorf (1976) and has many appealing properties 



A Real Example 

Step 3 (optional?): find a copula with a similar structure 

 

 

 

 

 

 

 

Can now perform model selection, followed by estimation 
followed by model validation (no time for this today) 

Gaussian copula Frank copula 



Copula Densities 

Assuming F(x1,…xn) has n-order partial derivatives (true 
almost everywhere for continuous distributions) 

 

 

 

 

 

 

 
 copula density 



Copula Densities 

Assuming F(x1,…xn) has n-order partial derivatives (true 
almost everywhere for continuous distributions) 

 

 

 

 

 

 

 
 

And decomposition is always an opportunity… 

copula density 



A quick word on estimation 

Caution: likelihood decomposition is misleading since the 
copula function depends on univariate marginals 

However, the following procedure: 

1. Estimate marginals first 

2. Estimate dependence parameter second 

is an unbiased, asymptotically Gaussian efficient estimate! 

 

Caution: can fail miserably if marginals are misspecified 
(Kim et al., 2007) 

Solution: estimate marginals conservatively (as before) 
(see Genest 1995 for properties) 
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Measuring Association 

We are interested in measuring association in a way that is 
invariant to monotone transformations (why?) 

What is the simplest measure for interaction between the 
ranks R[m], S[m] of the samples X[m], Y[m]? 

 

 

 

Or asymptotically (using F(X) and G(Y) to denote marginals) 

 

 

This is Spearman’s Rho measure of association 



Copulas and Spearman’s Rho 

 

 

  Proof: use U=F(X) and V=G(Y) to denote marginals 



Copulas and Spearman’s Rho 

 

 

  Proof: use U=F(X) and V=G(Y) to denote marginals 



Copulas and Spearman’s Rho 

Proof: use U=F(X) and V=G(Y) to denote marginals 

 

 

  

Nice, but why is this interesting? 



Copulas and Spearman’s Rho 

 

 

  Fact: for essentially all copula families, by construction 

 
 

This is also called concordance or PQD ordering 
 

Example: 
 

In this case, Spearman’s is a dependence measure 
(i.e. =0 only if X and Y are independent) 
 

 copula families define a dependence ordering!  



Copulas and Spearman’s Rho 

 

 

  Appealing properties of copulas and Spearman’s Rho: 

1. Both are non-parametric measures of association 

2. Both are invariant to monotone transformations 
(substantially strengthening Pearson’s correlation) 

3. Both do not depend on the univariate marginals 
(by now it should be obvious that we require this)  

 Similar relationship with other dependence measures 
 Copulas can be viewed as a tool to gauge dependence 



Copulas and Mutual Information 

 

 

  Probably THE dependence measure in ML 

But: seems like it heavily depends on the marginals… 
 

Recall: 
 

It follows that MI is simply the negative copula entropy! 



Copulas and Mutual Information 

 

 

  Probably THE dependence measure in ML 

But: seems like it heavily depends on the marginals… 
 

Recall: 
 

It follows that MI is simply the negative copula entropy! 
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Attempts at multivariate Copulas 

Explicit constructions: 

 Some of the families we have seen have a multivariate form 

 Koehler & Symanowski (1995) 

 Morillas (2005) 

 Liebscher (2006) 

 Fischer & Kock (2007) 

 … 

Compositions of bivariate copulas: 

 Save & Trede (2006): Hierarchical Archimedean Copulas 

 Bedford & Cook (2002), Aas et al. (2009): Vines 

 

Rarely used for more than 10 dimensions 
(will mention an exception later) 



Vines 

For two variables we have 

 

 

 

For three variables 

 

Or 

 

And so on… 

X X 

Joe, 1996; Bedford and Cooke 2001 



Graphical Representation of a D-Vine  

 A bivariate copula 
is associate with 
each edge 

 Density is defined by 
product over edge  
copulas and univariates 

 

 

a very general and flexible representation that 
is well understood and uses only bivariate copulas 

 

So what are we doing here? 

 

 

 

 

  

 

Joe, 1996; Bedford and Cooke 2001 



Limitations of Vines 

 High-dimensional 
conditional terms are 
hard to estimate! 

 Cumbersome construction 
does not take advantage  
of independencies 

 In practice, only first 
“levels” have any effect 

 

 

 

  

 



Limitations of Vines 

 High-dimensional 
conditional terms are  
hard to estimate! 

 Cumbersome construction 
does not take advantage  
of independencies 

 In practice, only first 
“levels” have any effect 

 

 

 

  

 

Rarely used for more than 10 dimensions 
(will mention an exception next) 



Distribution free BBNs 

Basic idea: use vines-like construction to parameterize 
conditional distributions and combine as in BNs 

Pros: 

 Compact and flexible 

 To-date only copula model that has been applied to 
high-dimensions (hundreds of variables) 

Cons: 

 Requires conditional correlations – in practice assumes 
these are specified and limited to Gaussian copula 

 

Most similar to development in ML that we will soon see 

 

 

  

 

Kurowicka and Cooke 2006, Hanea 2009 



Recommended Reading 

 Everything you always wanted to know about copula 
modeling but were afraid to ask [Genest, 2007] 

 Modeling dependence with copulas [Embrechts, 2001] 

 Understanding relationships using copulas  
[Frees & Valdes, 1998] 

 The Joy of Copulas [Genest, 1986] 

 Coping with Copulas [Schmidt, 2006] 
 

Book references: 

 An Introduction to Copulas [Nelsen, 2006] 

 Multivariate Models & Dependence Concepts [Joe, 1997] 

 Vine Copula Handbook [Kurwicka & Joe, 2012] 



Part II: Graphical Copula Models 
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Scope 
 Learning with tree-averaged distributions [Kirshner, 2008], 

MCMC for Bayes Mix of Copulas [Silva and Gramacy, 2009] 

 The Nonparanormal [Liu, Laffery, Wasserman, 2009] 

 Copula Bayesian Networks [Elidan, 2010] 

 Copula Processes [Wilson and Ghahramani, 2010] 
 

What will not be covered: 

 Kernal-based copula processes [Jaimungal and Ng, 2009] 

 Mixed cumulative distribution networks [Silva et al., 2011] 

 Inference-less inference, copula network classifiers, 
lightning-speed structure learning [Elidan, 2010, 2012] 



 
Markov Networks 

 U is an undirected graph that encodes independencies: 

 
 

where N(Xi) are the neighbors of Xi in U 
 

Theorem (Hammersley-Clifford): 

 If f is positive and the independencies 
 hold then it factorizes according to U 
 

For trees: 

  

x2 

x3 

x4 

x5 

x6 

x1 



From Bivariate Copulas to Copula Trees  

It follows that the joint copula also decomposes: 

 

 

  

 

 

Kirshner, 2008 



From Bivariate Copulas to Copula Trees  

It follows that the joint copula also decomposes: 

 

 

  

 

 

Given marginals, we can find the optimal tree 
efficiently using a maximum spanning tree algorithms 
 

Upside: only bivariate estimation (different than Vines!) 

Downside: assumptions are too simplistic 

Kirshner, 2008 



Mixture of All Trees 

Challenge: there are N(N-2) trees 

Idea: use edge weight matrix  to define a prior over trees 

 

 

Theorem (Meila and Jaakkla 2006):  

1. Easy to compute Z (via generalized Laplacian matrix) 

2. Decomposability of the prior allows us to compute 
    average over all trees efficiently 

 

Average density over copula trees (still a copula!) can be 
computed via ratio of matrix determinants 

 
Kirshner, 2008 



Estimation using EM 

Parameters: 1) the edge weight matrix  
                     2) the bivariate copula parameters ij 

E-Step: need to compute posterior over N(N-2) trees! 

Decomposability  need only compute N(N-1)/2 edge 
probabilities and reuse computations. 

M-Step: standard optimization of bivariate copulas that 
depends only on pairs of variables 

 

Assuming copula estimation complexity of O(M): 
complexity of learning the model is O(MN3) 

Practical for tens of variables! 

Kirshner, 2008 



Modeling Daily Multi-Site Rainfall 

 N stations with 
unique marginals 
(10-40) 
 
M observed days 
(3000-8000) 
 

Kirshner, 2008 

day 1 

R1 R2 RT R3 

day 2 day 3 day T 

… 



Selecting Number of States 

Kirshner, 2008 



More Bayesian, More Flexibility 

Silva and Gramacy, 2009 

Advantage of Kirshner: the set of all trees is 
parameterized by a matrix with O(N2) parameters 

Limitations of Kirshner: the set of all trees is 
parameterized by O(N2) parameters 

 Heavy parameter sharing 

 Matrix and mixture proportions are learned using MLE 

 No possibility of using some trees 

 

Goal: use Bayesian paradigm to allow for more flexibility 

 



More Bayesian, More Flexibility 

Silva and Gramacy, 2009 

Idea: a Dirichlet Process with shared univariate marginals 

A mixture 
component 

Data sampled 
from component 

sampled from a 
Dirichlet prior 

copula 
parameters univariate marginals 

shared by all components 

specific tree [z(i)] 
and parameters 
generate sample m 



Markov Chain Monte Carlo 

As usual, the devil is in the computations: 

 Given a set of trees and cluster assignments, propose 
parameters in the standard way 

 Given a set of tree and parameters, proposed cluster 
assignments in the standard way 

 Given fixed parameters and cluster assignments, 
proposing trees is a potentially problematic 
combinatorial problem 

Silva and Gramacy, 2009 



Caution 

Recall: need to maintain parameters i,j for all i,j 

But: given one tree T, with ei,j edge indicators 

 

 

 some i,j are independent of data! 
(and will be useless later if sampled from prior) 

 

 requires innovative sampling of trees with 
parameters (Silva and Gramacy, 2009) 

 

 



Consistent estimation in high-dimension 

 

 

 

 

 

Goal: theoretically founded estimation for 
nonparametric high-dimensional undirected graphs 

 

Liu, Lafferty, Wasserman, 2009 

Graphical Models Regression Dimension Assumptions 

Multivariate normal Linear model Low 
Parametric 

Graphical LASSO LASSO High 

? 
Additive model Low 

Nonparametric 
Sparse additive model High 



The Nonparanormal Distribution 

X = (X1,…,Xp)T  NPN(,,f) if there exists 
univariate functions {fj(Xi)} such that 

 

 

Isn’t this is just a Gaussian copula? 
Yes, if fi(Xi) are monotone and differentiable 

So what is the problem? 

 High-dimensionality leads to estimation issues (p>n) 

 Plugging in the empirical distribution does not work in 
the semiparametric case… 

 
Liu, Lafferty, Wasserman, 2009 



Density-less Structure Estimation 

Let           and  be the covariance of h(x) 

Key insight: (Xj  Xi|rest) if and only if ij
-1=0  

 

can estimate structure solely from ranks  

1. Replace observation with normal score 

 

2. Compute functional sample covariance 

 

 

3. Estimate structure from  (e.g. using glasso)   

Liu, Lafferty, Wasserman, 2009 



Winsorized Estimator  

Liu, Lafferty, Wasserman, 2009 

Main result: 

 

risk, norm (of ) and model selection consistency 

(using analysis of Rothman et al, 2008, and Ravikumar, 2009) 



Synthetic Structure Recovery 

Liu, Lafferty, Wasserman, 2009 

 40 nodes 

 2 different  
transforms 

 several training 
sample sizes 

 



S&P 500: differences from glasso 

Liu, Lafferty, Wasserman, 2009 

Non-Gaussian case possibly reveals new useful information 



 
Bayesian Networks 

 G is a directed graph that encodes independencies: 

 

 

Theorem: 

 If f is positive and the independencies 
 hold then it factorizes according to G 

 

 

 Intuitive representation of uncertainty 

 Easy to construct using local   

 

  

X1 X2 

X5 

X3 X4 



 

Simple bivariate case: 

 
 

 

 

Conditional Densities  Using Copulas 

Elidan, 2010 



 

Simple bivariate case: 

 
 

 

 

Theorem: For any f(x|y), there exists a copula such that 

 
 

 

 
 

Conditional Densities  Using Copulas 

Elidan, 2010 



 

Simple bivariate case: 

 
 

 

 

Theorem: For any f(x|y), there exists a copula such that 

 
 

 

 
 

And constructive converse also holds! 

 

Conditional Densities  Using Copulas 

Elidan, 2010 

simpler than the 
copula density! 



From local to global Copulas 

Theorem: if the independencies in G hold then 

 
 

and (partially) vice-versa 

 

A Copula Network defines a valid joint density 

 
 

 we can now use graphical model tools!  
 

Note: this is similar to non-parameteric BBNs (Hanea 
2009) without relying on conditional rank correlations 

 

 
 

 Can now take advantage of se standard graphical 
models structure learning techniques 

Elidan, 2010 
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 Copula networks dominate BN models 
 Learn structure in less than ½ hour! 

Elidan, 2010 



Complexity of Dependency Structure 
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 Better generalization with sparser structures 
 Simple (one parameter) copula resists over-fitting 

Elidan, 2010 
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 Better generalization with sparser structures 
 Simple (one parameter) copula resists over-fitting 

Elidan, 2010 



Control Over Marginals 

Elidan, 2010 

Caveat: the valid density defined via 
 

 

is only a copula for tree structures 

  generally, the univariate marginals are skewed 

If you are copula person: this is a disaster  
(easily fix for Gaussian copula as is done for NPBBNs) 
 

From the UAI perspective: 

 
 

and the marginals in practice are quite accurate! 

no control 
over marginals 

complete 
control 



Expressiveness vs Efficiency 
Common sense in ML: there is a computational price for 
additional expressiveness / flexibility  

However: separation of univariates from dependence can 
“magically” avoid this:   

 Because local copula functions are simple (i.e. one 
parameter), estimation is efficient despite flexibility 

 Perform mean-field like inference faster than standard 
mean field [Elidan, 2010] 

 Significantly faster structure learning using new 
relationship of S and expected likelihood [Elidan, 2012] 



Expressiveness vs Efficiency 
Common sense in ML: there is a computational price for 
additional expressiveness / flexibility  

However: separation of univariates from dependence can 
“magically” avoid this:   

 Because local copula functions are simple (i.e. one 
parameter), estimation is efficient despite flexibility 

 Perform mean-field like inference faster than standard 
mean field [Elidan, 2010] 

 Significantly faster structure learning using new 
relationship of S and expected likelihood [Elidan, 2012] Can we take further advantage 

 of the representation? 



Real-life Processes 

Motivation: 

 Relationship between distance and velocity of rocket 

 Relationship between volatilities of RVs, e.g. the 
returns on equity indices (hetero-scedastic sequence) 

Challenges: 

 Infinitely many interacting variables Zt 

 Non-Gaussian interaction 

 Varied marginal distributions 

 

Wilson and Ghahramani, 2010 
See also related work by Jaimungal and Ng, 2009 



Gaussian Processes 

A collection of random variables Zt, any finite number 
of which have a joint Gaussian distribution 

Used to define distribution over functions: 

 
 

1. any finite set {f(zi)} have a joint Gaussian distribution 

2. m(zi) is the expectation of f(Zi) 

3. ij=k(zi,zj) defines the 
functions properties 

Rasmussen and Williams 2006 
for (many) more details 



Copula Processes 

Let  be a process measure with marginals Gt and joint H. 

Zt is a copulas process distributed with base measure  if 

 

 

Example: Gaussian Copula Process =  is a standard GP 

Another way to think about this: 

There is a mapping  that transform Zt into a GP 

 

Wilson and Ghahramani, 2010 



Gaussian Copula Process Volatility 

Wilson and Ghahramani, 2010 

Let y1,…,yn be a heteroscedastic sequence (varying t) 

Goal: model joint of 1,…,n and predict unrealized t 
 

1. Observations:          [this can be relaxed] 

2.  Volatility modeled as a Gaussian Copula Process 

                        [warping function] 

 

Challenges:  

 Learn a flexible warping function 

 Need to do inference over many latent RVs 

Interesting technical solutions in the paper! (no time ) 



Simulation Results 

Wilson and Ghahramani, 2010 

Very promising results also for “JUMP” (spike like) sequence 

MSE 



DM-GBP exchange rate returns 

Wilson and Ghahramani, 2010 



DM-GBP exchange rate returns 

Wilson and Ghahramani, 2010 

Next step: multivariate stochastic predictions  
“Generalised Wishart Processes”, Wilson and Ghahramani 2011 



Summary 
Model Base Copula # RVs Structure Central merit 

Vines any 
bivariate 

<10s conditional 
dependence 

Well understood general 
purpose framework 

NPBBN Gaussian in 
practice 

100s BN+Vines Mature application to large 
hybrid domains 

Tree-
averaged 

any 
bivariate 

10s Markov Bayesian averaging over 
structures 

Non-
paranormal 

Gaussian 100-1000s Markov Large scale undirected 
estimation with guarantees 

Copula 
Networks 

any 
multivariate 

100s BN very flexible at the cost of 
partial control over marginals 

Copula 
Processes 

any 
multivariate 

 of few 
dimensions 

- Arbitrarily many variables 
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Scope 
 REGO: Rank-based Estimation of Renyi Information Using 

Euclidean Graph Optimization [Poczos et al., 2010] 

 Copula Mix Model for Dependency-seeking Clustering 
[Rey and Roth, 2012] 
 

What will not be covered: 

 ICA & ISA Using Schweizer-Wolff [Kirshner and Poczos, 2008] 

 Estimation of Renyi Entropy and Mutual Info. Based on 
Generalized Nearest-Neighbor Graphs [Pal et al., 2010] 

 Copula-based Kernel Depend. Measures [Poczos et al. 2012] 

 Copula-based applications 

 Other related works in computational statistics venues 

 

 

 

 



Mutual Information 
Goal: estimate entropy/information 

 

 

 

 

Plug-in approach:  

1. Estimate 

2. Plug into divergence equation  
 

Problem: density estimation is difficult 
 

Hope: the density is a nuisance parameter, do we need it? 
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Euclidean Entropy Estimation 

1. A 2D (uniform) graph with 
samples as nodes 

2. Compute length 
of MST (TSP,k-NN,…) 
 

Theorem (Steel 1988 for MST) 

 

 
 

Hero and Michel (1998): 

  use graph optimization algorithms to estimate entropy 

 

 

 

 

 

 

 



From Entropy to Mutual Information 

Recall from the first part of the tutorial: 

 

 

Problem: we don’t know U=FX(x),V=FY(y) 

REGO (Poczos et al., 2010): 

1. Transform data into empirical ranks 

2. Use Euclidean graph optimization to estimate entropy 
 

         non-parametric estimator for Renyi information 
  that is provably strongly consistent and robust 

 

See also Pal et al. (2010), Poczos et al. (2012) for follow-ups 

 

 

 



Example: Image Registration 

Task: register image rotated at different angles  
 



Example: Image Registration 

Task: register image rotated at different angles  
(with <5% of the pixels corrupted) 



Multiview Dependency Learning 

We are given two paired datasets 

 

How are these “views” related? 

 

 

 

Canonical Correlation Analysis (CCA):  

linearly project views so as to maximize correlation 

       weights of the projection are indicative of  
       dimensions that underlie the dependence 



Dependency Seeking Clustering 

Idea: dependence may be evident only locally 

 

 

 

 

 

 

 
 

          seek for clusters where dependency “manifests” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



From CCA to Clustering 

Probabilistic interpretation of CCA (Bach & Jordan, 2005) 

 

 

 
 

Dependency seeking clustering (Klami & Kaski, 2008): 

 
 

 

Problem: still assumes Gaussian structure within X and Y 

Idea: replace Gaussian distribution with a copula 

Rey and Roth, 2012 



Yeast under Heat-shock 

View 1: Gene expression            View 2: Binding affinities 

Rey and Roth, 2012 

Copula Mixture: 
8 clusters 

Gaussian Mixture: 
14 clusters 



Take Home Messages 
 

 

 

 

 Copulas (like graphical models) are a general 
framework for multivariate modeling 

 Separation between univariate marginals and 
dependence function provides great flexibility 

 Copulas are closely related to dependence concepts 

 High-dimensional copula models are in their infancy 

 

MAKE ML LESS GAUSSIAN 



Challenges for Grabs 
 

 

 

 

 Effective inference and learning for large-scale copula-
based models (we talked about some of these) 

 Copula-like constructions for discrete data  
(see Mayor 2005, 2007) 

 Large-scale hybrid (discrete/continuous) models 

 What if we wanted to control more than univariate 
distributions (the compatibility problem) 

 

MAKE ML LESS GAUSSIAN 


